martes, 14 de febrero de 2012

MEMORIA RAM


MEMORIA RAM

RAM o memoria de acceso aleatorio (Random Access Memory). Es la memoria del usuario que contiene de forma temporal el programa, los datos y los resultados que están siendo usados por el usuario del computador. En general es volátil, pierde su contenido cuando se apaga el computador, es decir que mantiene los datos y resultados en tanto el bloque reciba alimentación eléctrica.


Tiempo de latencia: Se denominan latencias de una memoria RAM a los diferentes retardos producidos en el acceso a los distintos componentes de esta última. Estos retardos influyen en el tiempo de acceso de la memoria por parte de la CPU, el cual se mide en nanosegundos (10-9 s).

Tiempo de acceso: Intervalo de tiempo entre el requerimiento para leer datos de (o escribir datos de) un dispositivo de almacenamiento (memoria, disco duro, etc.) y la terminación de esta acción.

Buffer de datos: Un buffer (o búfer) es un espacio de memoria, en el que se almacenan datos para evitar que el programa o recurso que los requiere, ya sea hardware o software, se quede sin datos durante una transferencia.

Paridad: propiedad de un conjunto de valores binarios utilizado para detectar y corregir errores en la comunicación de datos.


Memoria RAM volátil y aleatoria:

La memoria volatil requiere energía constante para mantener la información almacenada, la memoria RAM es una memoria volátil, ya que pierde información cuando no tiene energía eléctrica y esta también es aleatoria pues se puede acceder a cualquier localización de la memoria en cualquier momento en el mismo intervalo de tiempo.

Se Almacena informacion solo cuando el computador tiene energía eléctrica y no se puede guardar información en esta por que al apagar el computador se borra toda esa información.

Memoria asíncrona: Estas no trabajan en forma síncrona con el reloj, es decir en un acceso a la memoria las señales no están coordinadas con el reloj manejado por el sistema.

Memoria síncrona: Estas si utilizan el reloj para coordinar la entrada y salida de las señales necesarias.

Modulos:

DIP: En los tiempos de la Computadora doméstica y del computador personal, los por lo general DIP de 14 o 16 pines se soldaban o se insertaban en zócalos sobre la tarjeta madre como cualquier otro componente de la misma. Esto suponía el uso de un área muy grande ya que los integrados iban colocados uno al lado del otro, además que en el caso de un fallo, la reparación era difícil o imposible condenando toda la placa.

SIPP: Con el desarrollo de nuevas tarjetas madre se hicieron claras esas desventajas y en un principio se plantearon formatos SIPP que fueron las primeras presentaciones modulares de memoria RAM y el antecedente directo de las SIMM.

SIMM: (Single In-line Memory Module): Pequeña placa de circuito impreso con varios chips de memoria integrados. Se fabrican con diferentes velocidades de acceso capacidades (4, 8, 16, 32, 64 Mb) y son de 30 ó 72 contactos.

DIMM: Módulo de Memoria en Línea Doble), son memorias de 64 bits, lo cual explica por qué no necesitan emparejamiento. Los módulos DIMM poseen chips de memoria en ambos lados de la placa de circuito impresa, y poseen a la vez, 84 conectores de cada lado, lo cual suma un total de 168 clavijas.

RIMM: Los módulos RIMM  cuentan con 184 pines y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los chips del módulo.

Módulos  para portatiles:

SO-DIMM: Los módulos tienen 100, 144 ó 200 pines. Los de 100 pines soportan transferencias de datos de 32 bits, mientras que los de 144 y 200 lo hacen a 64 bits.

MICRODIMM: Los módulos usan la más reciente tecnología de 214-pin “mezzanine connector”, la cual reduce el tamaño del módulo en un 40 por ciento aproximadamente.

SO-RIMM: (RIMM de contorno pequeño), diseñados para ordenadores portátiles. Los módulos poseen sólo 160 clavijas.

DRAM: La DRAM (RAM Dinámica) es el tipo de memoria más común en estos tiempos. Se trata de una memoria cuyos transistores se disponen en forma de matriz, en forma de filas y columnas. Un transistor, acoplado con un capacitador, proporciona información en forma de bits.

Memorias asíncronas:

FMP-RAM: (Fast Page Mode RAM)
Inspirado en técnicas como el "Burst Mode" usado en procesadores como el Intel 486, se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no seria necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.
EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búffer de salida hasta que comienza el próximo ciclo de lectura.
BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.

Memorias síncronas:
SDR SRAM
En las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.
PC66: la memoria SDRAM que funciona a 66 MHz. Actualmente sólo se utiliza en los Celeron.  ·
PC100: la memoria SDRAM que funciona a 100 MHz. Hoy en día es la más utilizada (K6-2, K6-III, K7 Athlon, Pentium II modernos y Pentium III).
PC100: SDR SDRAM, funciona a un máx de 100 MHz.
PC133: SDR SDRAM, funciona a un máx de 133 MHz.

Nombre estándar
Velocidad del reloj
Tiempo entre señales
Velocidad del reloj de E/S
Datos transferidos por segundo
Nombre del módulo
Máxima capacidad de transferencia
DDR-200
100 MHz
10 ns
100 MHz
200 millones
PC1600
1600 MB/s
DDR-266
133 MHz
7,5 ns
133 MHz
266 millones
PC2100
2133 MB/s
DDR-300
150 MHz
-ns
150 MHz
300 millones
PC2400
2400 MB/s
DDR-333
166 MHz
6 ns
166 MHz
333 millones
PC2700
2667 MB/s
DDR-366
183 MHz
5,5 ns
183 MHz
366 millones
PC3000
2933 MB/s
DDR-400
200 MHz
5 ns
200 MHz
400 millones
PC3200
3200 MB/s
DDR-433
216 MHz
4,6 ns
216 MHz
433 Millones
PC3500
3500 MB/s
DDR-466
233 MHz
4,2 ns
233 MHz
466 millones
PC3700
3700 MB/s
DDR-500
250 MHz
4 ns
250 MHz
500 millones
PC4000
4000 MB/s
DDR-533
266 MHz
3,7 ns
266 MHz
533 millones
PC4300
4264 MB/s
DDR2-400
100 MHz
10 ns
200 MHz
400 millones
PC2-3200
3200 MB/s
DDR2-533
133 MHz
7,5 ns
266 MHz
533 millones
PC2-4300
4264 MB/s
DDR2-600
150 MHz
6,7 ns
300 MHz
600 millones
PC2-4800
4800 MB/s
DDR2-667
166 MHz
6 ns
333 MHz
667 millones
PC2-5300
5336 MB/s
DDR2-800
200 MHz
5 ns
400 MHz
800 millones
PC2-6400
6400 MB/s
DDR2-1000
250 MHz
3,75 ns
500 MHz
1000 millones
PC2-8000
8000 MB/s
DDR2-1066
266 MHz
3,75 ns
533 MHz
1066 millones
PC2-8500
8530 MB/s
DDR2-1150
286 MHz
3,5 ns
575 MHz
1150 millones
PC2-9200
9200 MB/s
DDR2-1200
300 MHz
3,3 ns
600 MHz
1200 millones
PC2-9600
9600 MB/s
DDR3-1066
133 MHz
7,5 ns
533 MHz
1066 millones
PC3-8500
8530 MB/s
DDR3-1200
150 MHz
6,7 ns
600 MHz
1200 millones
PC3-9600
9600 MB/s
DDR3-1333
166 MHz
6 ns
667 MHz
1333 millones
PC3-10667
10664 MB/s
DDR3-1375
170 MHz
5,9 ns
688 MHz
1375 millones
PC3-11000
11000 MB/s
DDR3-1466
183 MHz
5,5 ns
733 MHz
1466 millones
PC3-11700
11700 MB/s
DDR3-1600
200 MHz
5 ns
800 MHz
1600 millones
PC3-12800
12800 MB/s
DDR3-1866
233 MHz
4,3 ns
933 MHz
1866 millones
PC3-14900
14930 MB/s
DDR3-2000
250 MHz
4 ns
1000 MHz
2000 millones
PC3-16000
16000 MB/s





RDRAM: Posteriormente nos encontramos que la frecuencia principal de las RDRAM llegó a los 1200 Mhz, incorporando dos canales RDRAM separados, a 1200 Mhz en un solo módulo RIMM4800. Además, han pasado de RIMMs de 16 bits a conseguir módulos de 32 y 64 bits.

XDR DRAM:  (eXtreme Data Rate Dynamic Random Access Memory) es una implementación de alto desempeño de las DRAM, el sucesor de las memorias Rambus RDRAM y un competidor oficial de las tecnologías DDR2 SDRAM y GDDR4. XDR fue diseñado para ser efectivo en sistemas pequeños y de alto desempeño que necesiten memorias de alto desempeño así como en GPUs de alto rendimiento.

SLDRAM: Memoria de acceso al azar dinámica de Synclink, es de alta velocidad memoria de acceso al azar similar a DRDRAM, no obstante sin el diseño propietario. Esta tecnología entrega funcionamiento grandemente mejorado sobre SDRAM tecnología sin el uso totalmente de una nueva arquitectura al igual que el DRDRAM. La llamada de las especificaciones para a 64-bit autobús funcionamiento en un reloj de 200 megaciclos frecuencia.

SRAM: SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb. Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción

ESDRAM--->Este tipo de memoria es apoyado por ALPHA, que piensa utilizarla en sus futuros sistemas. Funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hast 3,2 GB/s. El problema es el mismo que el de las dos anteriores, la falta de apoyo, y en este caso agravado por el apoyo minoritario de ALPHA, VLSI, IBM y DIGITAL.

VRAM
Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.

SGRAM (Synchronous Graphic RAM)
Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.

WRAM (Windows RAM)
Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.





No hay comentarios:

Publicar un comentario